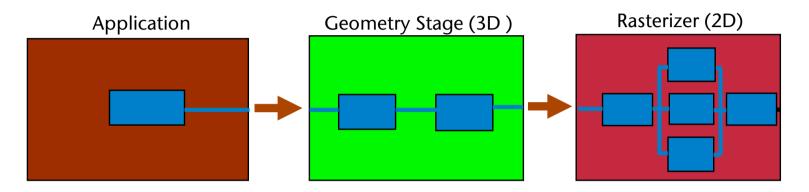


Advanced Computer Graphics Real-Time Rendering by Advanced Visibility Computations

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

Bottlenecks in the Rendering Pipeline

Remember the graphics pipeline



- A pipeline always has the throughput of its slowest link!
- Possible bottlenecks in the graphics pipeline :
 - In rasterizer → "fill limited"
 - In geometry stage → "transform limited"
 - Bus between app. and graphics hardware → "bus limited"
 - If the graphics card is faster than the application can provide geometry
 - → "CPU limited" (recognizable by 100% CPU usage)

Classification of Visibility Problems

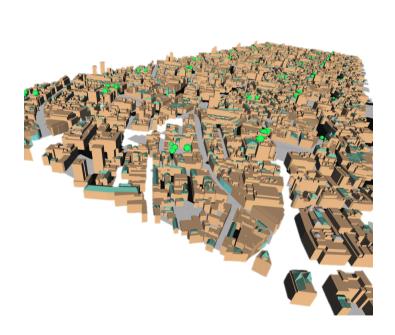
- Problem classes within "visibility computations":
 - 1. Hidden Surface Elimination: which pixels (parts of polygons) are covered by others?
 - 2. Clipping: which pixels (parts of polygons) are inside the viewport?
 - 3. Culling: which polygons cannot be visible? (e.g., because they are located behind the viewpoint)
- Difference: HSE & clipping are rather used to render an accurate image, culling is rather used to accelerate the rendering of large scenes
- Note: the boundary is blurred

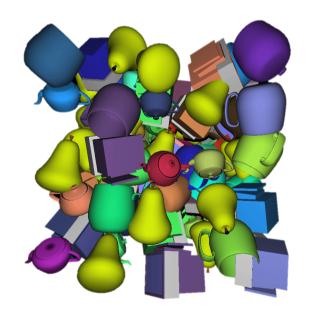
Culling

- Let A = set of all primitives;
 let S = set of visible primitives.
- Many rendering algorithms operate on the entire set A, i.e., they have a minimum effort of O(|A|)
- No problem if $|S| \approx |A|$
- Also no problem, if the number of primitives is small compared to the number of pixels
 - Reminder: depth complexity

"to cull from" = "sammeln [aus ...] / auslesen"
"to cull flowers" = Blumen pflücken

 But for complex visual scenes, the number of visible primitives is typically much smaller than the total number of primitives! (i.e., |S| << |A|)

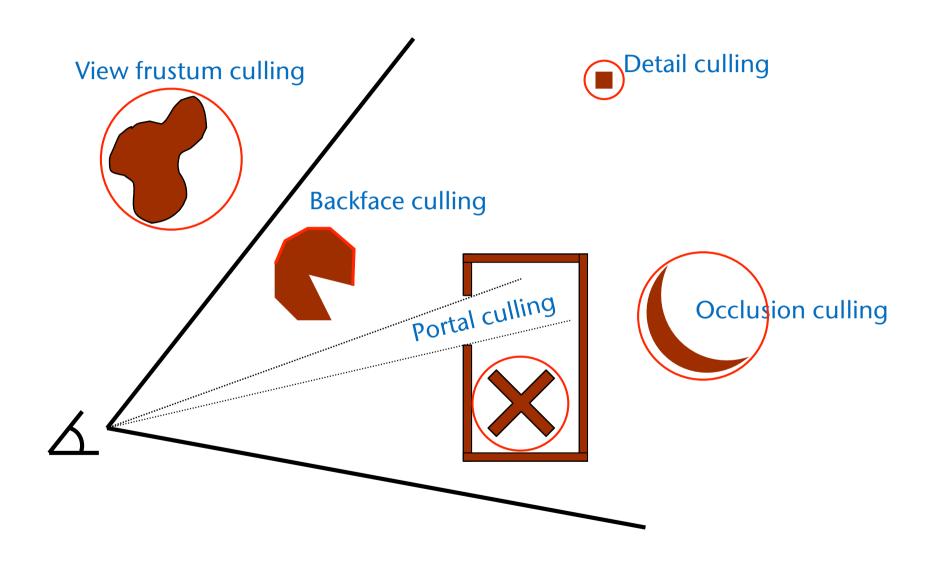




Culling is an important optimization technique (as opposed to clipping)

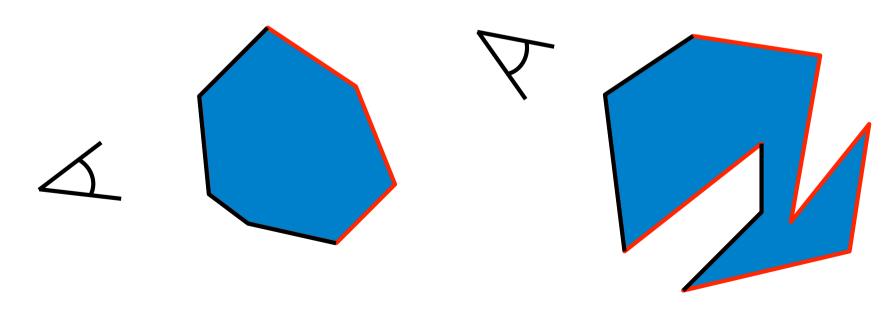
- For |S| << |A|, existing rendering algorithms are not efficient
- Culling algorithms attempt to determine the set of non-visible primitives $C = A \setminus S$ (or a subset thereof), or the set of visible primitives S (or superset thereof)
- Definition: potentially visible set (PVS) = a superset $S' \supseteq S$
 - Goal: compute PVS S' as small as possible, with minimal effort
 - Trivial PVS (with trivial effort) is, of course, A

Kinds of Culling



Back-Face Culling

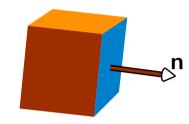
- Definition: a solid = closed, opaque object = non-translucent object with non-degenerate volume
- Observations:
 - With solids, the back faces are never visible
 - For convex objects, there is exactly one contiguous back side
 - For non-convex solids, there may be several unconnected back sides

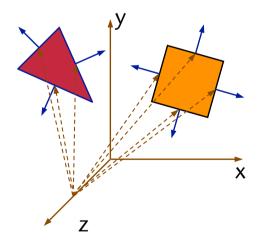


- Backface Culling = not drawing the surface parts that are on the far side, with respect to the viewpoint
 - Only works with solids!

- Compute view vector v from the viewpoint to any point p of the polygon
 - Perspective projection: $\mathbf{v} = \mathbf{p} \mathbf{eye}$
 - Orthogonal projection: $\mathbf{v} = [0\ 0\ -1]^T$
- Polygon is back facing, iff
 angle between **n** and **v** < 90°

$$\Leftrightarrow$$
 $\mathbf{n} \cdot \mathbf{v} > 0$





Example

$$N_1 \cdot V = (2, 1, 2) \cdot (-1, 0, -1)$$

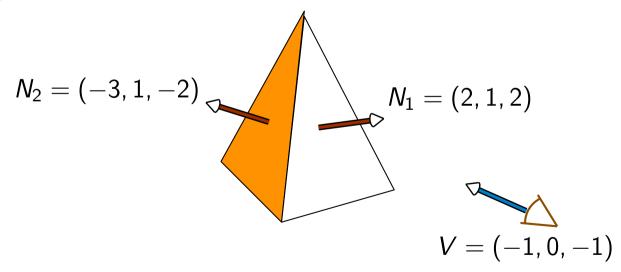
= $-4 < 0$

 $\Rightarrow N_1$ front facing

$$N_2 \cdot V = (-3, 1, -2) \cdot (-1, 0, -1)$$

= 5 > 0

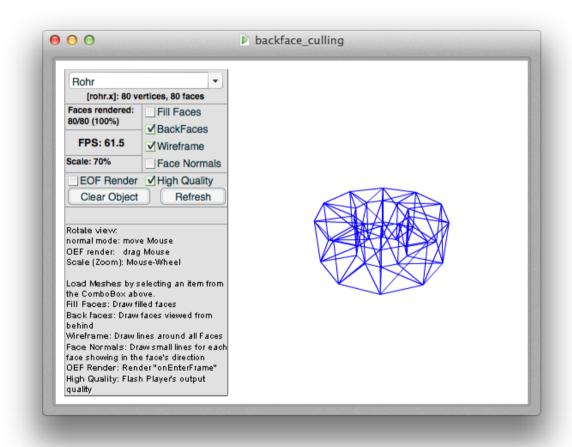
 $\Rightarrow N_2$ back facing



Backface Culling in OpenGL

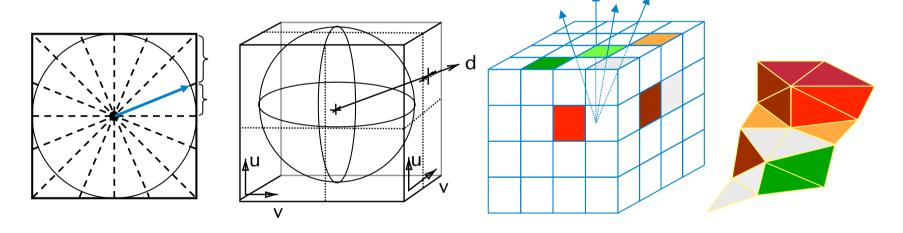
Just enable it:

```
glCullFace( GL_BACK );
glEnable( GL_CULL_FACE );
```

Normal Masks

- Central idea: replace the scalar product by classifying all normals
- Preprocessing: create classes over the set of all normals
 - Enclose the sphere of normals (a.k.a. Gaussian sphere) with cube (direction cube)



- Results in $6 \cdot N^2$ classes (N = number of partitions along each axis)
- Classification of a normal is very easy
- With each polygon store the class of its normal

- Encoding a normal (pre-processing):
 - The entire direction cube \mapsto bit string of length $6 \cdot N^2$
 - A normal \mapsto bit string with only one 1, otherwise 0
 - Encode this as offset + part of the bit string that contains the 1
 - E.g.: subdivide bit string in bytes, offset = 1 Byte, results in $256 \times 8 = 2048$ Bits

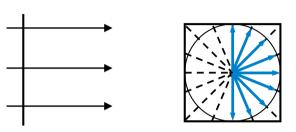
```
typedef struct PolygonNormalMask
{
    Byte offset, bitMask;
};
```

```
0....0000010000000.....0

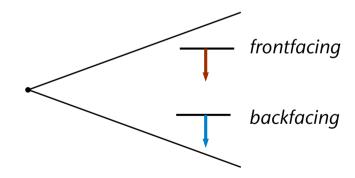
offset | bitMask
```

- Save those 2 bytes for each polygon
- E.g.: choose *N* = 16
- Results in 6.16.16 = 1536 classes for the set of all normals

- Culling (initialization):
 - Identify all those normal classes whose normals are all backfacing
 - With orthographic projection:



With perspective projection: which normals are backfacing depends on normal direction and position of the polygon!



 Therefore: determine a "conservative" set of classes which are backfacing – regardless of the location of the polygon

Graphical derivation how to estimate this conservative set backfacing of classes: conservative set $\alpha/2$ $\alpha/2$ back facing

- In practice:
 - Test each class in all four corners of the view frustum
 - Test for a class = test of 4 normals, which are pointing to the corners of the cell (on the direction cube) that represents that class

Represent this conservative set of classes as a bit string (e.g. 2048
 Bits = 256 Bytes) in a byte array:

```
Byte BackMask[256];
```

Culling (runtime): test for each polygon

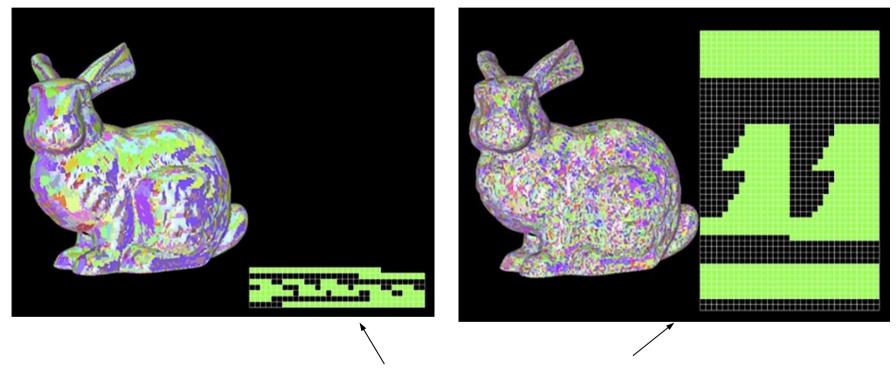
```
if ( (BackMask[byteOffset] & polygon.bitMask) == 0 )
   render polygon
```

- Further acceleration:
 - Divide view frustum into sectors
 - Thus, the angle $\alpha/2$ in each sector is smaller
 - For each sector, compute its own BackMask[]
 - Render the scene "sector by sector"

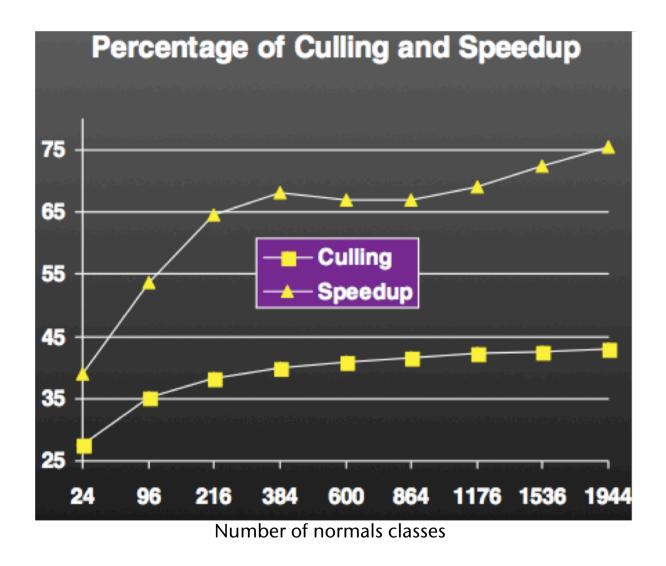
Example

216 classes ("clusters")

1536 classes ("clusters")



BackMask for the current viewpoint (green = backfacing)



Result: speedup factor ~1.5 compared to OpenGL backface culling

Clustered Backface Culling

Reminder: some simple rules for min/max

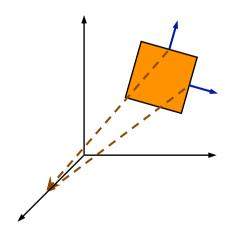
$$\max_{i} \{x_{i} + y_{i}\} \leq \max_{i} \{x_{i}\} + \max_{i} \{y_{i}\}$$

$$\max_{i} \{x_{i} - y_{i}\} \leq \max_{i} \{x_{i}\} - \min_{i} \{y_{i}\}$$

$$\max_{i} \{kx_{i}\} = \begin{cases} k \max_{i} \{x_{i}\} &, k \geq 0 \\ k \min_{i} \{x_{i}\} &, k < 0 \end{cases}$$

- In the following, \mathbf{n}^i and \mathbf{p}^i are the normal and a vertex of a polygon from a cluster (a set) of polygons; let e be the viewpoint
- Attention: in the following, we use the "inverted" definition for backfacing!

$$\mathbf{n} \cdot (\mathbf{e} - \mathbf{p}) \le 0$$



July 2014

- Assumption: cluster (= set) of polygons is given
- All polygons in cluster are backfacing if and only if

$$\forall i : \mathbf{n}^i \left(\mathbf{e} - \mathbf{p}^i \right) \le 0 \quad \Leftrightarrow$$
 $\max \left\{ \mathbf{n}^i \left(\mathbf{e} - \mathbf{p}^i \right) \right\} \le 0$ (1)

Upper bound for (1) is

$$\max\left\{\mathbf{n}^{i}\left(\mathbf{e}-\mathbf{p}^{i}\right)\right\} \leq \max\left\{\mathbf{e}\mathbf{n}^{i}\right\} - \min\left\{\mathbf{n}^{i}\mathbf{p}^{i}\right\} \tag{2}$$

- Set $d := \min\{n^{i.}p^{i}\}$ (pre-computation)
- Write (2) as

$$\max \left\{ \mathbf{n}^{i} \left(\mathbf{e} - \mathbf{p}^{i} \right) \right\} \leq \max \left\{ e_{x} n_{x}^{i} + e_{y} n_{y}^{i} + e_{z} n_{z}^{i} \right\} - d$$

$$\leq \max \left\{ e_{x} n_{x}^{i} \right\} + \max \left\{ e_{y} n_{y}^{i} \right\} + \max \left\{ e_{z} n_{z}^{i} \right\} - d \quad (3)$$

■ Assumption: **e** is located in the positive octant, i.e., e_x , e_y , $e_z \ge 0$; then we can give rewrite (3) as:

$$\max \left\{ \mathbf{n}^{i} \left(\mathbf{e} - \mathbf{p}^{i} \right) \right\}$$

$$\leq e_{x} \cdot \max \left\{ n_{x}^{i} \right\} + e_{y} \cdot \max \left\{ n_{y}^{i} \right\} + e_{z} \cdot \max \left\{ n_{z}^{i} \right\} - d$$

$$\leq \mathbf{m} \cdot \mathbf{e} - d , \quad \text{mit} \quad \mathbf{m} = \begin{pmatrix} \max \left\{ n_{x}^{i} \right\} \\ \max \left\{ n_{y}^{i} \right\} \\ \max \left\{ n_{z}^{i} \right\} \end{pmatrix}$$

• Analogously for e_x , e_y , $e_z \le 0$:

$$\max \left\{ \mathbf{n}^i \left(\mathbf{e} - \mathbf{p}^i \right) \right\} \leq \bar{\mathbf{m}} \cdot \mathbf{e} - d$$
, with $\bar{\mathbf{m}} = \begin{pmatrix} \min \left\{ n_x^i \right\} \\ \min \left\{ n_y^i \right\} \\ \min \left\{ n_z^i \right\} \end{pmatrix}$

- For all other octants, combine min and max appropriately
 - Construct vector w_e, combined from m and m' like this:

$$\mathbf{w}_e = (w_x, w_y, w_z)$$
 with $w_x = \begin{cases} m_x & \text{, } e_x \leq 0 \\ \bar{m}_x & \text{, } e_x > 0 \end{cases}$, similarly w_y , w_z

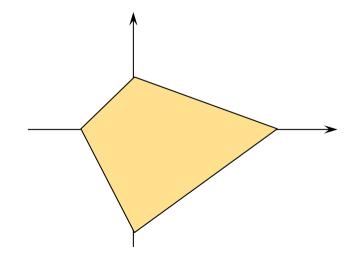
This allows us to write the (conservative) test as:

$$\mathbf{w}_{e} \cdot \mathbf{e} - d \leq 0 \Rightarrow \text{cluster is backfacing}$$
 (4)

- Pre-computation: for each cluster determine \mathbf{m} , $\bar{\mathbf{m}}$ and d
- Memory requirements per cluster: 28 bytes (2 vectors + 1 scalar)

Geometric Interpretation

- Inequality (4) defines 8 planes (one per octant)
- The 4 planes of adjacent octants intersect at one point, which lies on the coordinate axis "between" the 4 octants
 - Example: consider the 4 planes in the octants with $e_X \ge 0$
 - All 4 planes have normals of the form $\mathbf{n} = (m_X, \cdot, \cdot)$
 - So, they all intersect the x-axis at the point $(\frac{d}{m_x}, 0, 0)$
- Those 8 planes form a closed volume, the so-called culling volume
- If the viewpoint is anywhere inside the culling volume, then the cluster is completely backfacing



Further Optimization: Change to Local Coordinates

- Problem: if the polygons are far away from the origin, and the origin is located on the positive side of the normal, then d is very much negative → the test is never positive
- Solution: run the test in a local coordinate system by translating all polygons in the cluster to a local origin c such that

$$d = \min \left\{ \mathbf{n}^i \cdot (\mathbf{p}^i - \mathbf{c}) \right\}$$

is as large (and positive) as possible

- Wanted is the optimal c
 - In practice: Try the center and corner of the BBox of the cluster as c
- Save **c** with the cluster, then test $\mathbf{w}_{(e-c)} \cdot (\mathbf{e} \mathbf{c}) d \le 0$
- Question: Will rotation achieve something?

Hierarchical Clustered Backface Culling

Two clusters can be combined to form a joint cluster:

$$\hat{\mathbf{m}} = \begin{pmatrix} \max(m_{x}^{1}, m_{x}^{2}) \\ \max(m_{y}^{1}, m_{y}^{2}) \\ \max(m_{z}^{1}, m_{z}^{2}) \end{pmatrix} \quad \hat{\bar{\mathbf{m}}} = \begin{pmatrix} \min(\bar{m}_{x}^{1}, \bar{m}_{x}^{2}) \\ \min(\bar{m}_{y}^{1}, \bar{m}_{y}^{2}) \\ \min(\bar{m}_{z}^{1}, \bar{m}_{z}^{2}) \end{pmatrix}$$

$$\hat{d} = \min(d_1, d_2)$$

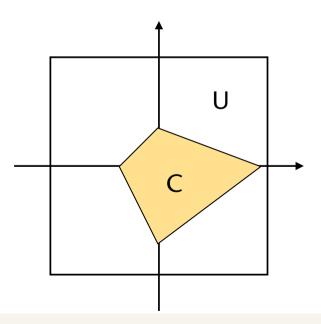
- These two vectors and \hat{d} provide a conservative estimate
- I.e.: if the joint cluster is back-facing, then the two original clusters are guaranteed to be back-facing, too \rightarrow cluster hierarchy
- If a hierarchy of clusters is created, define a front-facing test, analogously to the back-facing test:
 - Stop testing, if a complete joint cluster is front- or back-facing
 - Otherwise: test the children for being completely front- or back-facing

Generating the Clusters

- For the evaluation of cluster candidates in an algorithm, we need a measure of the "performance" of a cluster
- Here: probability P that the cluster C will be culled
- Use a heuristic to calculate P:

$$P(C) = \frac{\text{Vol(culling volume)}}{\text{Vol(all possible viewpoint position)}} = \frac{\text{Vol}(C)}{\text{Vol}(U)}$$

- Vol(C) can be computed exactly
- For *U* choose the BBox of the entire scene
- If local culling coordinates are used: choose U = c · Bbox(cluster) ("near-culling probability")



- Question: given two clusters A, B; Is it faster to test and to render A and B separately, or is it faster to test the joint cluster $C = A \cup B$ first? (on average!)
- Let T(A) be the expected(!) time to test cluster A and render it in case of (possible) visibility. Then

$$T(A) = t + (1 - P(A)) R(A)$$

where P(A) = probability, that cluster A gets culled, R(A) = time to render A (without further tests), and t = time for back-face test of a cluster

So, combining clusters A and B is worth it, if and only if

$$T(C) < T(A) + T(B) \Leftrightarrow$$

$$t + (1 - P(C))R(C) < 2t + (1 - P(A))R(A) + (1 - P(B))R(B) \Leftrightarrow$$

$$P(C) > \frac{-t + P(A)R(A) + P(B)R(B)}{R(A) + R(B)} \Leftrightarrow$$

$$P(C) > \frac{P(A)n_A + P(B)n_B - \frac{t}{r}}{n_A + n_B} \qquad \text{Assumption:}$$

$$R(A) = n_A \cdot r,$$

$$r = \text{constant effort for one polygon}$$

 Ratio t/r depends on the machine; but can easily be determined experimentally and automatically in advance (depends on graphics card, number of light sources, textures, ...)